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ABSTRACT: The development of a new strain energy function for hyperelastic solids
based on the logarithmic strain measure is the objective of the present article. For all
possible types of deformation it was shown that the proposed energy function is based
on three independent material parameters. Using available experimental data for
rubber-like materials from the literature, one may determined the materials parame-
ters by a nonlinear fitting. The available domain of the strain energy function can be
determined by plotting the third invariant of logarithmic strain vs the second one. The
numerical integration of the experimental data of true stress as a function of the
logarithmic strain for various types of deformation yields the strain energy function W,
for rubber-like solids. The proposed model involves only one parameter that must be
determined by fitting with the experimental data. © 2000 John Wiley & Sons, Inc. J Appl
Polym Sci 77: 660–672, 2000
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INTRODUCTION

Rubber-like materials are peculiar in the me-
chanical and thermodynamic or thermoelastic
properties. Early attempts to interpret these
properties of rubbers could not overcome the dif-
ficulty of explaining its very high extensibility in
terms of classical concepts of the structure of mat-
ter. The high extensibility coupled with values of
Young’s modulus of order 1 N mm22 (about 1025

N/mm2 for normal solids) defied any explanation
in terms of cohesional forces between molecules
as normally understood. The solution to the prob-
lem was more or less coincident with the emer-
gence of the concept of a high polymer—that is, of
a material composed of molecules of extremely
high molecular weight built up by the successive

addition of similar units in the form of a single
chain. The acceptance of the concept of a high
polymer constituted a revolution of thought not
only in relation to the chemistry of these materi-
als, but equally in relation to the interpretation of
their physical properties.

Meyer1 first proposed the connection between
the chain-like structure of polymer molecule and
the long-standing problem of rubber elasticity.
The kinetic approach of the rubber elasticity was
followed up from the idea of the chain molecule
considered as an isolated entity and later of an
assembly of chains corresponding to the bulk rub-
ber. This development was due to Guth and
Mark2 and to Kuhn.3 A variety of theoretical mod-
els have been devised for the calculation of the
elastic properties of the network.4–7 All these
models embody the same basic physical concepts
and lead to substantially similar conclusions.

By a more accurate statistical treatment it is
possible to derive a relation between the force on
a single chain and the distance r between its ends,
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which is valid over the whole range of extension.8

A mathematical theory was also developed by
Rivlin,9,10 which describes the deformation, under
the action of applied forces, of bodies of ideal
highly elastic materials, which are incompress-
ible and isotropic in their undeformed state. The
physical properties of the material are specified in
terms of a stored-energy function of two strain
invariances I1 and I2, which are expressible in
terms of the principal extension rations li (i
5 1–3) at the point of the deformed body consid-
ered. Mooney11 showed that the form of W is the
most general one, which can be valid even for
large deformations for an ideal incompressible
highly elastic material. The relations between the
principal values of stresses and the principal
stretches in a pure homogeneous strain involve
the partial derivatives of W upon I1 and I2. Due to
the incompressibility condition for rubbers, only
the differences of principal stresses can be deter-
mined and not the individual stresses.

From the purely phenomenological standpoint,
many attempts have been made to obtain a more
realistic mathematical formulation of the elastic
properties of rubbers than that provided by either
the statistical theory or two constant Mooney–
Rivlin9–11 form of stored energy function. In a
more general case, the store energy function W
was shown to be expressible in the form of even
powered series of the principal stretches,12 which
was developed in an analogous way to the Rivlin
formulation. Valanis and Ladel13 proposed a new
approach for the estimation of the store energy
function of rubber-like materials subjected to var-
ious types of deformation . They have proposed as
a hypothesis that W must be represented as the
sum of separable functions of the three indepen-
dent extension rations. Additionally, these sepa-
rable functions must be identical for symmetry
considerations. An important development is that
of Ogden,14 who proposed a more general store
energy function for rubber materials based on the
Valanis–Landel hypothesis. For an incompress-
ible rubber, Ogden expresses W as a series of li

an,
where an can be any real positive or negative
number. The proposed W, in conjunction with a
good nonlinear fitting algorithm, can fit the ex-
perimental data up to break for all types of defor-
mations.

Gent15 proposed a simple two parameters con-
stitutive relation for W, applicable over the entire
range of strains for rubber networks. As an exam-
ple, experimental data from simple extension de-
formation were fitted with the proposed store en-

ergy function. However, this function was not ap-
plied to all possible types of deformation in order
to check the overall validity of the proposed func-
tion. As pointed by Gent, the proposed empirical
formula has several advantages: (1) it reduces to
Neo-Hookean form at small strains, and (2) it is
expressed in terms of the strain invariance and as
a consequence can be applied to complex states of
deformation.

Arruda and Boyce16 have proposed a constitu-
tive model for the deformation of rubber materi-
als that is shown to represent successfully the
response of these materials in uniaxial tension,
biaxial extension, uniaxial compression, plane
strain compression, and pure shear. The devel-
oped constitutive relation is based on an eight-
chain representation of the underlying macromo-
lecular network structure of the rubber and the
non-Gaussian behavior of the individual chains in
the proposed network. The proposed model re-
quires two material parameters, an initial modu-
lus and limiting chain extensibility. Wu and Gies-
sen17 have developed a three- dimensional molec-
ular network theory, which use a non-Gaussian
statistical mechanics model for the large exten-
sion of molecules.

An empirical one-parameter equation was also
proposed by the author18 for fitting different types
of deformation for rubber-like materials. Using
the proposed function with a logarithmic strain
uniaxial experimental data, up to high values of
strain were fitted. However, the validity of this
equation must be checked, and for all the possible
type of deformations used in the design of engi-
neering components with rubber. Using a Neo-
Hookean strain energy function, the author was
able to predict the stress distribution in bonded
elastic elastomeric materials.19

In the present work, a different way of ap-
proaching the problem using the concept of the
logarithmic strain is introduced. A new type of
strain energy function is implemented in order to
fit all possible types of deformation of rubber-like
composites. The proposed strain energy function
is based on the second and third logarithmic in-
variant of strain, and involves only three materi-
als parameters. In the section following the nest,
preliminary concepts on the kinematics of hyper-
elasticity are discussed. The logarithmic strain
measure and its invariance are discussed in the
section after that. The last section shows the form
of the strain energy function based on the loga-
rithmic strain measure.
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KINEMATICS

This section depicts a brief review of the mathe-
matical aspects of the kinematics of nonlinear
elasticity. Let x denote the motion of a body B;
then19,20

x 5 x~X, t! (1)

which defines a family of deformations from the
reference configuration. An underline symbolizes
a tonsorial notation. In coordinates representa-
tion, eq. (1) is written as

xi 5 xi~Xi, t! (2)

The system xi is related to natural basis ei and
the corresponding Xi is related to basis di. We
also introduce the corresponding shifter:

gk
a 5 ek z da

ga
k 5 ek z da (3)

The deformation gradient of the motion x is a
second-order tensor field and is defined as

F 5 ¹x~X, t! N Fa
k 5 x,a

k ;
­xk

­Xa

5
­xk~Xg, t!

­Xa (4)

The Jacobean determinant of the deformation
gradient describes the transformation (local volu-
metric deformation) of a referential volume ele-
ment dV to a volume element dv in the current
configuration, i.e.,

dv 5 JdV N J ; udet F u 5
rR

r
(5)

where rR and r define the densities in the refer-
ence and deformed configurations, respectively.

According to polar decomposition theorem,21,22

any invertible linear transformation F has two
unique multiplicative decompositions, i.e.,

F 5 RU 5 VR (6)

where R is orthogonal and U, V is symmetric
positive definite.

One can define the right Cauchy–Green tensor
as follows21,22:

C 5 U2 5 FTF N Cab 5 x,a
k x,b

m gkm (7)

and the left Cauchy–Green tensor of the deforma-
tion is

B 5 V2 5 FTF N Bkm 5 x,a
k x,b

m gab (8)

The eigenvalues of U and V are the principal
stretches of the deformation. The eigenvalues of C
and B are the squares of these principal stretches.
Also, the principal invariance Ik( A) of a tensor
value A are defined as the coefficients of the fol-
lowing polynomial:

det~l1 1 A! 5 O
m50

n

Im~A!ln2m (9)

where I0(A) 5 0.
If the principal stretches are denoted by li,

then the invariance of C and B are given by

IC 5 IB 5 O li
2

IIC 5 IIB 5 O li
2lj

2~i Þ j!

IIIC 5 IIIB 5 P li
2 (10)

Cauchy’s first law of motion is given by

TRk;a
a 1 rRbk 5 rRx 0k (11)

where “;” denote the covariant derivative.

EXPLICIT FORMS OF STRAIN ENERGY
FUNCTION AND STRESS TENSOR FOR
ISOTROPIC HYPERELASTIC
INCOMPRESSIBLE MATERIALS

An elastic material for which a strain energy
function exists is called a Green elastic or hyper-
elastic solid. For such materials, the following
relation gives the rate of working of stresses on
the body:21,22

dW
dt 5 trH­W

­F
dF
dt J (12)

and the work done on the path of deformation is
given by
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W~F! 5 W~F0! 1 E
C

dW
dt dF (13)

where C defines a path along the space of defor-
mation gradient.

According to fundamental theorem on hyper-
elastic materials, if the strain energy function of a
hyperelastic material has a strict minimum, the
material is a simple solid, and any minimizing
configuration is a natural state. The strain energy
function for such materials can be expressed as a
function of a certain number of scalars I1, I2, . . . ,
In that are called invariants, i.e.,

W 5 W~C! 5 W̃~C! 5 W~I1, . . . , In! (14)

A hyperelastic material is isotropic if and only
if its strain energy function W(U) 5 W̃(C) where U
and C are taken relative to an undistorted state,
is an isotropic function, i.e., an orthogonal invari-
ant. For an isotropic material the strain energy
may be expressed as an isotropic function of the
right stretch tensor U, or the left stretch tensor V,
or the right Cauchy–Green tensor C 5 FTF or the
left Cauchy–Green tensor B 5 FFT, i.e.,

W~F! 5 W~U! 5 W~V! 5 W̃~C! 5 W̃~B! (15)

The strain energy W(V) for isotropic materials
is an invariant and may expressed as a symmetric
function of the principal stretches li:

W~V! 5 W~l1, l2, l3! (16)

One can also consider an orthogonal basis of
proper vectors of the left stretch tensor V. These
vectors define the principal axes of strain in the
deformed state, which coincide with the principal
axes of the stress.

The stress tensor T is given by

T 5 2p1 1 2r
­W̃
­IB

B 2 2r
­W̃
­IIB

B21 (17)

which plays an important role in finite elasticity.
The principal stresses ta, which correspond to

principal stretches la, are related by the following
relation:

ta 5 rla

­W
­la

~a 5 1, 2, 3! (18)

where the parameter p can be determined from
the boundary conditions of the problem under
investigation.

LOGARITHMIC STRAIN MEASURE AND
ITS INVARIANCES

As pointed out in the sectionon kinematics, the
three eigenvalues of the left stretch tensor V are
denoted by l1, l2, and l3 and their corresponding
orthonormal eigenvectors by n1, n2, n3. The general
Eulerian strain measure can be defined as follows22:

e 5 f~V! 5 O
i51

3

f~li!ni ^ ni (19)

where f is a scale smooth monotone function.
One can obtain all commonly known Eulerian

strain measures by taking the scale function f( x)
as certain particular forms. Assuming that f( x)
5 ln( x), the Eulerian logarithmic strain measure
is given by

ln~V! 5 O
i51

3

ln~li!ni ^ ni (20)

In general, it is difficult to calculate the logarithmic
strain measure and its rates using the last equa-
tion. As noticed by Truesdell,22 the logarithmic
strain measure was restricted to certain particular
deformations, such as simple tension, and was more
general for deformations whose principal stretch
axes ni are invariant or using the direct or explicit
basis-free expressions for ln(V) and its rates.

According to Hamilton principal,21,22 every ma-
trix satisfies its own characteristic equation, i.e.,

ea
3 2 Ieea

2 1 IIeea 2 IIIe 5 0 (21)

where the first invariance of the logarithmic
strain is given by

Ie 5 tr~e! 5 O
i51

3

ei, Iee 5 tr~e2! 5 O
i51

3

ei
2,

Ieee 5 tr~e3! 5 O
i51

3

ei
3 (22)

and the second is
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IIe 5
1
2 ~Ie

2 2 Iee! 5
1
2 P

i,j51

3

eiej~ ; i Þ j!

5 e1e2 1 e2e3 1 e1e3 (23)

IIIe 5
1
6 ~Ie

3 2 3IeIee 1 2Ieee! 5 e1e2e3 (24)

Reference 23 gives the solution of eq. (21), i.e.,

ea 5
1
3 SIe 1 2ÎIe

2 2 3IIe cosFM 1 2p~a 2 1!

3 G
(25)

where

M 5 arccosH2Ie
3 2 9IeIIe 1 27IIIe

2~Ie
2 2 3IIe!

J (26)

The strain energy function W, can be defined as
follows:

W~e1, e2, e3! 5 W~Ie, Iee, Ieee! 5 W~Ie, IIe, IIIe!

(27)

Choosing a logarithmic strain measure (the so-
called Hencky’s strain), one can obtain the first
strain invariant, i.e.,

Table I Various Forms of Strain Energy Function for Hyperelastic Solids

W(Ic, IIc) 5 C1(IC 2 3) 1 C2(IIC 2 3) Mooney–Rivlin9–11

W(Ic) 5 C1(IC 2 3) Neo-Hookean21

W(IC, IIC) 5 C1(IC 2 3) 1 C2ln(IIC/3) Gent–Thomas25

­W
­IC

5 G exp@a~IC 2 3!2# and
­W
­IIc

5 Gb/IIc Hart–Smith26

W~l1, l2, l3! 5 2m O
i51

3

li@ln~li! 2 1# K. Valanis and R. Landel13

W 5
2G
n IE 1 BIE

m

where IE 5
1
n O

i51

3

~li
n 2 1!

P. J. Blatz et al.26

W~l1, l2, l3! 5 O
n51

M
mn

an
O
i51

3

~li
an 2 3! R. W. Ogden14,21

W 5 nkTF l

În
b 1 lnS b

sinh bDG 2 W0

where b 5 L21S l

ÎnD, L~b! 5 cot b 2 1/b

P. D. Wu and E. Giessen17

W 5 nkQF1
2 ~IC 2 3! 1

1
20N ~I1

2 2 9! 1
11

1050N2 ~I1
3 2 27!G

1 nkQF 19
7000N3 ~I1

4 2 81! 1
519

673750N2 ~I1
5 2 243!G 1 · · ·

Arruda and Boyce16

W 5 2
E
6 Jmln~1 2 J1/Jm!

where J1 5 O
i51

3

li
3 2 3 and Jm 5 J1umax

A. Gent15

W~l! 5
E
a H~1 1 e!a11 2 1

a 1 1 2 eJ
e 5 ln~l!

P. A. Kakavas18
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Ie 5 O
i

ei 5 O
i

ln~li! 5 lnSP
i

liD 5 ln~J! (28)

For incompressible materials, J 5 1 and hence
eq. (28) leads to

Ie 5 0 f e3 5 2~e1 1 e2! (29)

and the strain energy function W can be written
as

W 5 W~Iee, Ieee! 2 pIe (30)

In addition, the second and the third invariance
are

Iee

2 5 ~e1 1 e2!
2 2 e1e2 (31a)

Ieee

3 5 2e1e2~e1 1 e2! (31b)

and if one lets the summation and the product of
the first and the second components of the loga-
rithmic strains to be written as

I 5 e1 1 e2 and II 5 e1e2 (32)

then eqs .(31) can be written as

Iee

2 5 I2 2 II (33a)

Ieee

3 5 2ISI2 2
Iee

2 D (33b)

Equating the derivative of Ieee as a function of I to
zero, i.e., dIeee/dI 5 0, one gets the following
relation:

I* 5 6~3Iee/2!1/2 (34)

and replacing into eq. (33b) yields the extreme
values of Ieee, i.e.,

Ieee

6 U
extreme

5 6SIee

6 D 3/2

(35)

In the special case of simple tension (ST) and/or
equibiaxial compression (EBC) where the princi-

ple stretches la are equal to l,l21/2,l21/2, the
logarithmic strains are ea 5 (e,2e/ 2,2e/ 2),
where ea 5 ln(la). The values of Iee and Ieee for
this type of deformation are equal to 3e2/ 2 and
3e3/4, respectively. Hence, for ST deformation the
following relation holds:

Ieeeuextreme 5 16SIee

6 D 3/2

~ST/EBC! (36a)

For EBT and/or simple compression, the principle
stretches la are equal to l,l,l22, and the logarith-
mic strains are ea 5 e,e,22e), where again e
5 ln(l), and for these types of deformations one
gets

Ieeeuextreme 5 26SIee

6 D 3/2

~SC/EBT! (36b)

See Figure 1. For pure shear (PS), the principle
stretches are l,1,l21, i.e., ea 5 (e,0,2e) and

Ieeeuextreme 5 0 ~PS! (37)

For incompressible materials, a plot of Ieee as a
function of Iee for all possible deformations is
shown in Figure 2.

STRAIN ENERGY FUNCTION BASED ON
THE LOGARITHMIC STRAIN MEASURE

Results and Discussion

The available domain of the strain energy func-
tion W 5 W(Iee, Iee) is shown in Figure 2, which
can be represented in the form

Figure 1 The second invariance of strain IIc as a
function of the first invariant Ic for various type of
deformation (a 5 21/2f simple tension and/or equibi-
axial compression, a 5 1f simple compression and/or
equibiaxial tension, a 5 0 f pure shear).
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W̃~Iee, Ieee! 5 O
i, j50

`

cij aib j~0 , a , 1, ubu , 1! (38)

where a 5 Iee/Iee,max, b 5 Ieee/Ieee, max, and the
invariance Ieee, max,Iee,max are related via eqs.
(35).

Simple Tension

For this type of deformation, the principal
stretches are equal to (l,l21/2,l21/2) the compo-
nents of the logarithmic strain are given by (e,
2e/ 2, 2e/ 2). Using eq. (31), one can easily prove
that the logarithmic strain e for this type of de-
formation is proportional to square root of the
second invariant of logarithmic strain Iee, i.e.,

e 5 Î2Iee/3 (39a)

and to qubic root of the third invariant of the
strain Ieee, i.e.,

e 5 Î34Ieee/3 (39b)

Figure 3(a) shows the experimental data pub-
lished by Treloar7,12 of the true stress t as a func-
tion of the logarithmic strain. The experimental
points were fitted with a polynomial of fifth de-
gree and the derived curve was plotted on the
same diagram. The strain energy function W was
derived from the true stress W as follows:

t 5 l
­W
­l
N W~e! 5 E

e50

e

t~e! de (40)

where the variable e represents the logarithmic
strain. The area underneath the curve t versus e
represents the stored strain energy function W
and the plot of WST as a function of Iee and Ieee is
shown in Figure 3(b). One can easily observe that
for simple tension experiments the strain energy
function W has the following form:

W̃ST~Iee, Ieee! 5 hIeee 1 gIee 1 kIee
3/2 (41)

where the constants h, g, and k are determined by
fitting with the experimental curve. One using
eqs. (40) and (41) may write the strain energy
function as follows:

W̃ST~e! 5
3
2 ~ge2 1 me3! (42)

where m 5 (h 1 Î6k)/2.
Therefore, the strain energy function for sim-

ple tension is reduced to two material parameters
(g and m). For e 5 1, eq. (42) yields that W̃(e) 5 0
as it should be in the undeformed state.

Assuming that the material is incompressible,
then the true stress is given by21,22

t~e! 5
dW̃
de1

2
dW̃
de2

5 3
dW̃
de ; e ; e1 (43a)

Replacing the derivative of W̃ upon e from eq. (42)
gives the following relation for the true stress:

t~e! 5 9ge 1
27
2 me2 (43b)

For small strain, the logarithmic strain e is al-
most equal to true strain « [i.e., e 5 ln(l) 5 ln(1
1 «) ' «] and eq. (43b) reduces to Hook’s law, i.e.,

Figure 2 Plot of the logarithmic third invariant of
strain Ieee as a function of the second one Iee and the
available domain of the strain energy function W.
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t 5 9ge f g 5
E
9 (44)

where E denotes the Young’s modulus of the ma-
terial.

The parameter g is directly related to the
modulus of elasticity of the material; therefore,
it has a clear physical meaning. Figure 3(a)
shows the experimental data for simple tension
(ref. 7) that are fitted with a polynomial of fifth
degree, and utilizing eq. (40) one can extract the
values of the strain energy function. The results
of W versus e for the Treloar data7 are shown in
the same plot. The strain energy function as a
function of the invariant of logarithmic strain
Iee and Ieee are shown in Figure 3(b). The mod-
ulus of elasticity of the material used by Tre-
loar7 is equal to 5.256 kgf /cm2, as estimated

from Figure 3(a). Hence, eq. (44) yields a value
of g equal to 0.584 kgf /cm2 . This value of g must
fit all the possible forms of deformation, e.g.,
simple tension, equibiaxial tension and/or sim-
ple compression, and pure shear. Figure 3(c)
shows the plot of the strain energy function as a
function of logarithmic strain for simple tension
data [see Fig. 3(a)]. The solid line represents
the nonlinear fitting (with Origin 4.0) of the
experimental data, derived from the true stress
vs logarithmic strain, using eq. (42). The mate-
rial parameter g was kept constant equal to
0.584 kgf /cm2 and the derived value of m was
equal to 8.574 kgf /cm2. That is, the data were
fitted perfectly well with only one parameter.
Figure 3(d) shows the true stress versus e of
Treloar data7 for simple tension, and the solid
line describes the fitting line with eq. (43b). For

Figure 3 (a) True stress as a function of logarithmic strain for simple tension
experimental data. Numerical integration of t (e) yields the form of the strain energy
function. (b) Plot of W for simple tension experiments versus Iee and Ieee. (c) Fitting of
the strain energy function from simple tension data (ref. 7) with eq. (42).

STRAIN ENERGY FUNCTION 667



the parameter g was assigned the same value
(i.e., E/9) as before, and the parameter m was
estimated to be 1.414 kgf /cm2, which once more
indicates that only one parameter was enough
to fit the data.

Equibiaxial Tension and /or Simple Compression

The principal stretches for such deformations are
(l, l, l22) and the logarithmic strains are given by
(e, e, 22e). (where e [ e1 5 e2), which are related
to the second and third logarithmic invariance of
strain by the relations

e 5 ÎIee/6 and e 5 Î32Ieee/6 (45a)

or equivalently,

Iee 5 6e2, Ieee 5 26e3 (45b)

Replacing eq. (45b) into eq. (41) yields the form of
the strain energy function for equibiaxial tests in
terms of the logarithmic strain e, i.e.,

W̃EBT/SC~e! 5 6@ge2 1 m9e3# (46)

where m9 5 2h 1 =6k.
Considering that the material is incompress-

ible, the true stresses in directions 1 and 2 are
equal, and the following relation can determine
them:

t1 5 t2 5
dW̃
de1

2
dW̃
de2

5
3
2

dW̃
de (47a)

Substitution of eq. (46) into (47a) yields the form
of the true stress, i.e.,

t~e! 5 18ge 1 27m9e2 (47b)

Figure 3(d) Fitting the true stress data for simple tension (ref. 7) with eq. (43b).
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Figure 4(a) shows experimental data for rubber
materials subjected to equibiaxial conditions.9,10,27,28

For the present analysis, the data presented by
Obata et al.27 were used, which are shown in
Figure 4(b). These data were fitted with a polyno-
mial and their integration yields the experimen-
tal strain energy function, which is also presented
in the same figure. A plot of the strain energy
function as a function of the second and third
invariance of logarithmic strain Iee and Ieee is
shown in Figure 4(c), which indicates that the
strain energy function for equibiaxial conditions
of a rubber material follows the form of eq. (41).
The data of the strain energy function were fitted
with eq. (46) using the nonlinear fitting algorithm
based on Levenberg–Marquardt method that is
written in the professional computer program Or-
igin 4.0. The values of the derived material pa-
rameters were g 5 0.584 kgf /cm2 and m9 5 2.064

kgf /cm2, respectively. The fitting of the strain
energy data is shown in Figure 4(d) with solid
line. Notice that the fitting is obtained with the
same value of parameter g, equal to one nineth of
the value of the modulus of elasticity of the ma-
terial derived from uniaxial data. The experimen-
tal data for the true stress as a function of the
logarithmic strain were fitted with eq. (47b) using
the same nonlinear algorithm [see Fig. 4(e)]. The
fitting is shown with the solid curve on the figure
and the derived parameters are g 5 0.584 and
m951.555 kgf /cm2, respectively. In the insertion,
one observes that the fitting is much better for
deformation up to e 5 1.2, or equivalently, l
5 3.32 (i.e., strain 232%).

Pure Shear

For pure shear (PS) type of deformation in incom-
pressible hyperelastic solids, for rubber like ma-

Figure 4 (a) Equibiaxial data of true stress as a function of the logarithmic strain. (b)
Plot of the true stress versus e 5 ln(l) (ref. 27) and the derived form of the strain energy
function WEBT. (c) Plot of the strain energy function for equibiaxial data vs the second
Iee and third Ieee logarithmic invariant. (d) Fitting of the extracted strain energy
function with eq. (46).
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terials, the principal stretches are (l, 1, l21) and
the components of the logarithmic strain are
given by (e, 0, 2e). The corresponding invariance
of the logarithmic strain are given by Ie 5 0, Ie
5 2e2, and Ieee 5 0, so that for such deformations
the strain energy function depends only on the
second invariance of logarithmic strain, i.e., WPS
5 W(Iee). Experimental data published by Riv-
lin10 under pure shear conditions are shown in
Figure 5(a). Fitting the data on the true stress
with a polynomial of fifth degree and using eq.
(40), one can compute the experimental values of
the strain energy for pure shear. The resulting
experimental data are plotted on the same Figure
5(a) that were fitted with a b-spline as the solid
line shows it. The logarithmic strain invariance
Iee and Ieee are computed via eqs. (31) as a func-
tion of the logarithmic strain e, i.e.,

Iee 5 2e2, Ieee 5 0 (48)

The nonlinear dependence of W upon Iee is shown
in Figure 5(b). Using eq. (41), one can compute the

strain energy function as a function of the second
logarithmic invariance Iee, i.e.,

W̃PS~Iee! 5 gIee 1 kIee
3/2 f W̃PS~e! 5 2~ge2 1 m0e3!

(49)

where m0 5 =2k.
Using the previously described nonlinear algo-

rithm, one can estimate that the parameters g
and m0 are equal to 0.584 and 10.619 kgf /cm2,
respectively. Figure 5(c) shows the fitting of the
experimental derived data for W from Rivlin’s10

published work with eq. (49).
The true stress for pure shear is given by

t~e! 5 2
dW̃
de 5 8Sge 1

3
2 m0e2D (50)

Figure 5(d) shows the fitting of the experimental
data with eq. (50) and the derived values of g and
m0 were computed to be equal to 0.584 and 2.00
kgf /cm2, respectively.

Figure 4(e) Fitting the experimental true stress data (from ref. 27) with eq. (47b).
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CONCLUSIONS

The present study shows that the strain energy
function W for hyperelastic solids subjected to
various types of deformation can be described by
eq. (41), which involves three parameters. How-
ever, the three parameters are reduced to one, as
previously shown for various types of deforma-
tion. The use of the logarithmic strain approach
leads to a new form of the strain energy function
based on two parameters. However, since one of
the parameters is determined by the Young’s
modulus of the material, the model is reduced to
one parameter. The computation of the unknown
parameter m was obtained by fitting with the
available experimental data from the literature.

The author is grateful to Professors Paul J. Blatz (ex.
Prof. at CALTECH),Victor Chang, and Joe Goddard at

the University of Southern California (USC) for teach-
ing him well the various theories of nonlinear elastic-
ity.
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